Hamdan Medical Journal (previously the Journal of Medical Sciences)

Table of Contents  

Human Embryonic and Human Induced Pluripotent Stem Cell Lines

James A Thomson, Junying Yu
Published in : Journal of Medical Sciences ; Vol 1, No 3 (2008)
DOI : 10.2174/1996327000801030106


Human embryonic stem (ES) cells capture the imagination because after many months of proliferation in vitro, these versatile cells maintain the ability to form potentially any cell type that makes up the body;  The proliferative and developmental potential of human ES cells promises an essentially unlimited supply of differentiated cells for basic research, drug discovery, and for transplantation therapies for diseases ranging from heart disease to Parkinson's disease to leukemia.  However, human ES cells are derived from preimplantation embryos, making them highly controversial. Using information gleaned from over a decade of research with primate  and human ES cells,  including the identification of key signaling pathways that promote undifferentiated proliferation and the development of approaches for genetic modification, we have recently derived the first human induced pluripotent stem (iPS) cells, cells with the defining characteristics of ES cells, but derived from somatic, not embryonic material. Human iPS cells thus have all the advantages of ES cells, but avoid the ethical controversy surrounding the destruction of human preimplantation embryos, and in addition allow the derivation of pluripotent cells lines that match the genetic background of a specific individual. For drug discovery and testing, panels of iPS cell lines can now be derived with a genetic composition that accurately reflects the ethnic diversity of a population, and cell lines can be derived from individuals predisposed to specific diseases for the development of new in vitro  models of disease. For transplantation therapies based on these cells, patient-specific iPS cell lines largely eliminate the concern of immune rejection. Here we discuss the historical events leading up to the isolation of human ES cells, and how the successful derivation of human iPS cells depended critically on the last decade of human ES cell research.

View article in  :   PDF    


Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al.Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391): 1145-7.Erratum in: Science 1998 Dec 4; 282(5395):1827.

Odorico JS, Kaufman DS, Thomson JA.Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001; 19(3): 193-204.

Thomson JA, Kalishman J, Golos TG, et al.Isolation of a primate embryonic stem cell line.Proc Natl Acad Sci USA 1995;92(17): 7844-8.

Thomson JA, Kalishman J, Golos TG, Durning M,Harris CP, Hearn JP. Pluripotent cell lines derived from common marmo set(Callithrix jacchus) blastocysts. Biol Reprod 1996; 55(2):254-9.

Thomson JA, Marshall VS. Primate embryonic stem cells. Curr Top Dev Biol 1998; 38: 133-65.

Amit M, Carpenter MK, Inokuma MS, et al.Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227(2): 271-8.

Xu RH, Peck RM, Li DS, Feng X, Ludwig T,Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2005; 2(3): 185-90.

Levenstein ME, Ludwig TE, Xu RH, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006; 24(3): 568-74.

Ludwig TE, Bergendahl V, Levenstein ME, Yu J,Probasco MD, Thomson JA. Feederindependent culture of human embryonic stem cells. Nat Methods 2006; 3(8): 637-46.Erratum in: Nat Methods 2006; 3(10): 867.

Ludwig TE, Levenstein ME, Jones JM, et al.Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24(2):185-7.

Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 2003; 21(1): 111-7.

Zwaka TP, Thomson JA. Homologous recombiniation in human embryonic stem cells. Nat Biotechnol 2003; 21(3): 319-21.

Kameda T, Smuga-Otto K, Thomson JA. A severe de novo methylation of episomal vectors by human ES cells. Biochem Biophys Res Commun 2006; 349(4): 1269-77.

Yu J, Vodyanik MA, Smuga-Otto K, et al.Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858): 1917-20.

Stevens LC, Little CC. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. ProcNatl Acad Sci USA 1954; 40(11): 1080-7.

Kahan BW, Ephrussi B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst 1970; 44(5): 1015-36.

Evans MJ, Stephens RJ, Cabral LJ, Freeman G.Cell renewal in the lungs of rats exposed to low levels of NO2. Arch Environ Health 1972; 24(3):180-8.

Puck TT, Marcus PI, CieciuraA SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 1956; 103(2): 273-83.

Calarco PG, Banka CL. Cell surface antigens of preimplantation mouse embryos detected by an antiserum to an embryonal carcinoma cell line. Biol Reprod 1979;

699-704.20. Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978;75(11): 5565-9.

Gachelin G, Kemler R, Kelly F, Jacob F. PCC4,a new cell surface antigen common to multipotential embryonal carcinoma cells,spermatozoa, and mouse early embryos. DevBiol 1977; 57(1): 199-209.

Comoglio PM, Bertini M, Forni G. Evidence for a membrane carrier molecule common to embryonal and tumour-specific antigenic determinants expressed by a mouse transplantable tumour. Immunology 1975;29(2): 353-64.

Klavins JV, Mesa-Tejada R, Weiss M. Human carcinoma antigens cross reacting with antiembryonic antibodies. Nat New Biol 1971;234(48): 153-4.

Howe CC, Gmür R, Solter D. Cytoplasmic and nuclear protein synthesis during in vitro differentiation of murine ICM and embryonal carcinoma cells. Dev Biol 1980; 74(2): 351-63.

Henderson JK, Draper JS, Baillie HS, et al.Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 2002; 20(4): 329-37.

Martin GR. Teratocarcinomas and mammalian embryogenesis. Science 1980; 209(4458): 768-76.

Rossant J, Papaioannou VE. The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differ 1984; 15(2-4): 155-61.

Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA 1976; 73(2): 549-53.

Papaioannou VE, McBurney MW, Gardner RL,Evans MJ. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 1975; 258(5530): 70-73.

Brinster RL. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 1974; 140(4): 1049-56.

Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 1975; 72(9): 3585-9.

Bronson DL, Andrews PW, Solter D, Cervenka J,Lange PH, Fraley EE. Cell line derived from a metastasis of a human testicular germ cell tumor. Cancer Res 1980; 40(7): 2500-6.

McBurney MW. Clonal lines of teratocarcinoma cells in vitro: differentiation and cytogenetic characteristics. J Cell Physiol 1976; 89(3): 441-55.

Atkin NB, Baker MC, Robinson R, Gaze SE.Chromosome studies on 14 near-diploid carcinomas of the ovary. Eur J Cancer 1974;10(3): 144-6.

Zeuthen J, Nørgaard JO, Avner P, et al.Characterization of a human ovarian teratocarcinoma-derived cell line. Int J Cancer 1980; 25(1): 19-32.

Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 1970; 21(3): 364-82.

Solter D, Skreb N, Damjanov I. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 1970; 227(5257):503-4.

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.

Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by eratocarcinoma stem cells.Proc Natl Acad Sci USA 1981; 78(12): 7634-8.

Bradley A, Evans M, Kaufman MH, Robertson E.Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.Nature 1984; 309(5965): 255-6.

Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978; 2(8085): 366.

Bongso A, Fong CY, Ng SC, Ratnam S. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 1994; 9(11): 2110-7.

Wang L, Li L, Menendez P, Cerdan C, Bhatia M.Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 2005;105(12): 4598-603.

Xu C, Rosler E, Jiang J, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 2005; 23(3):315-23.

Dvorak P, Dvorakova D, Koskova S, et al.Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 2005; 23(8):1200-11.

Amit M, Shariki C, Margulets V, Itskovitz-Eldor J.Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004; 70(3):837-45.

Beattie GM, Lopez AD, Bucay N, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers.Stem Cells 2005; 23(4): 489-95.

Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 2005; 118(Pt 19): 4495-509.

James D, Levine AJ, Besser D, Hemmati- Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.Development 2005; 132(6): 1273-82.

Wilmut I, Schnieke AE, McWhir J, Kind AJ,Campbell KH. Viable offspring derived from fetal and adult mammalian cells.Nature 1997;385(6619): 810-3. Erratum in: Nature 1997;386(6621): 200.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.

Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448(7151):260-2.

Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells.Nat Biotechnol 2007; 25(10): 1177-81.

Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature 2007; 448(7151): 318-24.

Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1(1): 55-70.

Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H.Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene 2007; 26(38):5564-76.

Takahashi K, Tanabe K, Ohnuki M, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.

Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion.Stem Cells 2006; 24(1): 168-76.

Vodyanik MA, Bork JA, Thomson JA, Slukvin II.Human embryonic stem cell-derived CD34+ cells: efficient production in the oculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005; 105(2): 617-26.

Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoieticprogenitors in human embryonic stem cell differentiation cultures. Blood 2006; 108(6):2095-105.

Nichols J, Zevnik B, Anastassiadis K, et al.Formation of pluripotent stem cells in the mammalian embryo depends on the POUtranscription factor Oct4. Cell 1998; 95(3): 379-91.

Chambers I, Colby D, Robertson M, et al.Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonicstem cells. Cell 2003; 113(5): 643-55.

Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113(5): 631-42.

Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122(6): 947-56.

Rodda DJ, Chew JL, Lim LH, et al.Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280(26): 24731-7.

Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.Nat Genet 2006; 38(4): 431-40.

Sperger JM, Chen X, Draper JS, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors.Proc Natl Acad Sci USA 2003; 100(23): 13350-5.

Balzer E, Moss EG. Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and Stress granules. RNA Biol 2007; 4(1): 16-25.

Add comment 

Home  Editorial Board  Search  Current Issue  Archive Issues  Announcements  Aims & Scope  About the Journal  How to Submit  Contact Us
Find out how to become a part of the HMJ  |   CLICK HERE >>
© Copyright 2012 - 2013 HMJ - HAMDAN Medical Journal. All Rights Reserved         Website Developed By Cedar Solutions INDIA