Hamdan Medical Journal (previously the Journal of Medical Sciences)

Table of Contents  

Glial Cells as the Source of Neurons and Glia in the Developing and Adult CNS

Luisa Pinto, Magdalena Gotz
Published in : Journal of Medical Sciences ; Vol 1, No 3 (2008)
DOI : 10.2174/1996327000801030114

Abstract


Here we discuss the identity, heterogeneity and functions of glial cells in the developing and adult central nervous system (CNS). First we define radial glial cells by morphological, cell biological and molecular criteria as true glial cells, akin to astroglia. We then describe the appearance of radial glial cells during neural development as a precursor intermediate between immature neuroepithelial cells and differentiating progeny. Then we review the diverse progeny arising in different lineages from radial glial cells as observed by clonal analyses and time-lapse imaging. This leads us to discuss the molecular mechanisms involved in the regulation of the lineage heterogeneity of radial glial cells - including their diversity in distinct regions of the CNS. We conclude by considering the possible mechanisms allowing neurogenic radial glial cells to persist into adulthood in various vertebrate classes ranging from fish to birds, while neurogenic glial cells become restricted to few small regions of the adult forebrain in mice and men. Despite these limitations of neurogenesis in the adult mammalian brain recent evidence demonstrated that glial cells local to the injury site can be reversed towards neurogenesis if provided with the adequate stimuli. This review therefore outlines the link between neurogenic mechanisms acting in radial glial and adult neural stem cells and the reactivation of glial cells towards neurogenesis after brain injury.

View article in  :   PDF    

References


Hatten ME. New directions in neuronalmigration. Science 2002; 297: 1660-3.

Levitt P, Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 1980; 193: 815-40.

Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual isposition. Science 1974;183: 425-7.

Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage.Development 2000; 127: 5253-63.

Noctor SC, Flint AC, Weissman TA,Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409: 714-20.

Miyata T, Kawaguchi A, Okano H, Ogawa M.Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 2001; 31: 727-41.

Campbell K, Gotz M. Radial glia: Multi-purpose cells for vertebrate brain development. Trends Neurosci 2002; 25: 235-8.

Kriegstein AR, Gotz M. Radial glia diversity: A matter of cell fate. Glia 2003; 43: 37-43.

Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005; 6;777-88.

Bentivoglio M, Mazzarello P. The history of radial glia. Brain Res Bull 1999; 49: 305-15.

Cameron RS, Rakic P. Glial cell lineage in the cerebral cortex: A review and synthesis. Glia 1991; 4: 124-37.

Rakic P. Specification of cerebral cortical areas. Science 1988; 241(4862): 170-6.

Bittman K, Owens DF, Kriegstein AR, LoTurco JJ.Cell coupling and uncoupling in the ventricular zone of eveloping neocortex. J Neurosci 1997; 17: 7037-44.

Weissman TA, Riquelme PA, Ivic L, Flint AC,Kriegstein AR. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex.Neuron 2004; 43: 647-61.

Misson JP, Edwards MA, Yamamoto M,Caviness VS Jr. Mitotic cycling of radial glial cells of the fetal murine cerebral all: A combined auto radiographic and immunohistochemical study. Brain Res 1988b;466: 183-90.

Chanas-Sacre G, Rogister B, Moonen G,Leprince P. Radial glia phenotype: Origin,regulation, and trans differentiation. J Neurosci Res 2000; 61: 357-63.

Edwards MA, Yamamoto M, Caviness VS Jr.Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 1990; 36: 121-44.

Hartfuss E, Galli R, Heins N, Gotz M.Characterization of CNS precursor subtypes and radial glia. Dev Biol 2001; 229:15-30.

Misson JP, Edwards MA, Yamamoto M,Caviness VS Jr. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res 1988a; 44: 95-108.

Mori T, Buffo A, Gotz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top DevBiol 2005; 69: 67-99.

Akimoto J, Itoh H, Miwa T, Ikeda K.Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Res Dev Brain Res 1993; 72:9914.

Gotz M, Stoykova A, Gruss P. Pax6 controls radial glia differentiation in the cerebral cortex.Neuron 1998; 21: 1031-44.

Schnitzer J, Franke WW, Schachner M.Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. JCell Biol 1981; 90: 435-47.

Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 1999b; 96: 11619-24.

Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021-34.

Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999; 49: 377-91.

Ridet JL, Malhotra SK, Privat A, Gage FH.Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci 1997; 20: 570-7.

Seri B, Garcia-Verdugo JM, Collado-Morente L,McEwen BS, Alvarez-Buylla A. Cell types,lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004; 478: 359-78.

Seri B, Garcia-Verdugo JM, McEwen BS,Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus.J Neurosci 2001; 21: 7153-60.

Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. CurrOpin Neurobiol 1999; 9: 135-41.

Gadisseux JF, Evrard P. Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus.Dev Neurosci 1985; 7: 12 -32.

Williams BP, Price J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 1995; 14: 1181-8.

McCarthy M, Turnbull DH, Walsh CA, Fishell G.Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci 2001; 21:6772-81.

Malatesta P, Hack MA, Hartfuss E, et al.Neuronal or glial progeny: regional differentces in radial glia fate. Neuron 2003; 37: 751-64.

Aaku-Saraste E, Hellwig A, Huttner WB. Loss of occludin and functional tight junctions, but not ZO-I, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis. Dev Biol 1996; 180: 664-79.

Mollgoard K, Saunders NR. Complex tight junctions of epithelial and of endothelial cells in early foetal brain. J eurocytol 1975; 4: 453-68.

Hatakeyama J, Bessho Y, Katoh K, et al. Hesgenes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 2004; 131: 5539-50.

Bibel M, Richter J, Schrenk K, et al. A.Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neuro Sci 2004; 7: 1003-9.

Conti L, Pollard SM, Gorba T, et al. Nicheindependent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 2005; 3: e283.

Heins N, Malatesta P, Cecconi F, et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 2002; 5:308-15.

Nikoletopoulou V, Plachta N, Allen N, Pinto L,Gotz M, Barde Y-A. Mis-specification of progenitors and neuronal death evealed by Pax6-eficient embryonic stem cells. Cell Stem Cell 2007; 1: 529-540.

Kroll TT, O'Leary DD. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA intemeurons of a lateral ganglionic eminence fate. Proc Natl Acad Sci USA 2005; 102: 7374-9.

Toresson H, Potter SS, Campbell K. Genetic control of dorsal-ventral identity in the telencephalon: Opposing roles for Pax6 and Gsh2. Development 2000; 127: 4361-7l.

Gotz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005; 46: 369-72.

Haubst N, Berger J, Radjendirane V, et al. Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development.Development 2004; 131: 6131-40.

Plachta N, Bibel M, Tucker KL, Barde YA.Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 2004; 131: 5449-56.

Noctor SC, Martinez-Cerdeno V, Ivic L,Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004; 7: 136-44.

Hartfuss E, Forster E, Bock HH, et al. Reelin signaling directly affects radial glia morphology and biochemical maturation.Development 2003; 130: 4597-609.

Grove EA, Williams BP, Li DQ, Hajihosseini M,Friedrich A, Price J. Multiple restricted lineages in the embryonic rat cerebral cortex.Development 1993; 117: 553-61.

Luskin MB, Pearlman AL, Sanes JR. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus.Neuron 1988; 1: 635-47.

Price J, Thurlow L. Cell lineage in the rat cerebral cortex: a study using retroviralmediated gene transfer. Development 1988;104: 473-82.

Reid CB, Liang I, Walsh C. Systematic widespread clonal organization in cerebral cortex. Neuron 1995; 15: 299-310.

Walsh C, Cepko CL. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 1993; 362: 632-5.

Hajihosseini M, Iavachev L, Price J. Evidence that retroviruses integrate into post- replication host DNA. EMBO J 1993; 12: 4969-74.

Walsh C, Cepko CL. Clonally related cortical cells show several migration patterns. Science 1988; 241: 1342-5.

Walsh C, Reid C. Cell lineage and patterns of migration in the developing cortex. Ciba Found Symp 1995; 193: 21-40; discussion 59-70.

Miyata T, Kawaguchi A, Saito K, Kawano M,Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 2004;131: 3133-45.

Qian X, Goderie SK, Shen Q, Stem JH, Temple S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 1998; 125: 3143-52.

Qian X, Shen Q, Goderie SK, et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells.Neuron 2000; 2: 69-80.

Parnavelas JG, Mione MC, Lavdas A. The cell lineage of neuronal subtypes in the mammalian cerebral cortex. Ciba Found Symp 1995; 193: 41-58; discussion 59-70.

Fogarty M, Richardson WD, Kessaris N. A subset of oligodcndrocytes generated from radial glia in the dorsal spinal cord. Development 2005; 132: 1951-9.

Gregori N, Proschel C, Noble M, Mayer-Proschel M. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: Generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and orsal-ventral differences in GRP cell function. J Neurosci 2002; 22: 248-56.

Kessaris N, Fogarty M, Iannarelli P, Grist M,Wegner M, Richardson WD. Competing waves of oligodendrocytes in the orebrain and postnatal elimination of an embryonic lineage.Nat Neurosci 2006; 9: 173-9.

Alvarez-Buylla A, Garcia-Verdugo JM,Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2: 287-93.

Bonfanti L, Peretto P. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog Neurobiol 2006; 83(1): 24-36.

Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. Radial gIia give rise to adult neural stem cells in the subventricular zone.Proc Natl Acad Sci USA 2004; 101: 17528-32.

Cappello S, Attardo A, Wu X, et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 2006; 9:1099-1107.

Costa MR, Wen G, Lepier A, Schroeder T, G􀀅tz M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 2007; doi:10.1242/dev.009951.

Anthony TE, Klein C, Fishell G, Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 2004; 4:881-90.

Anthony TE, Mason HA, Gridley T, Fishell G,Heintz N. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells.Genes Dev 2005; 19: 1028-33.

Feng L, Hatten ME, Heintz N. Brain lipid-binding rotein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 1994; 12:895-908.

Dang L, Yoon K, Wang M, Gaiano N. Notch3 signaling promotes radial glial/progenitor character in the mammalian telencephalon.Dev Neurosci 2006; 28: 58-69.

Gaiano N, Nye JS, Fishell G. Radial glial identity is promoted by Notch 1 signaling in the murine forebrain. Neuron 2000; 26 : 395-404.

Förster E, Tielsch A, Saum B, et al. Disabled 1,and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 2002;99(20): 13178-83.

Anton ES, Marchionni MA, Lee KF, Rakic P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997; 124(18): 3501-10.

Patten BA, Peyrin JM, Weinmaster G, Corfas G.Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci 2003; 23(14): 6132-40.

Patten BA, Sardi SP, Koirala S, Nakafuku M,Corfas G. Notch1 signaling regulates radial glia differentiation through multiple transcriptional mechanisms. J Neurosci 2006; 26(12): 3102-8

Schmid RS, McGrath B, Berechid BE, et al.Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci USA 2003; 100(7):4251-6

Yoon S, Seger R, Choi EJ, Yoo YS. SB203580 induces prolonged B-Raf activation and promotes neuronal differentiation upon EGF treatment of PC12 cells. Biochemistry (Mosc) 2004; 69(7): 799-805.

Holm PC, Mader MT, Haubst N, Wizenmann A,Sigvardsson M, Gotz M. Loss- and gain-offunction analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 2006; 34: 99-119.

Arai Y, Funatsu N, Numayama-Tsuruta K,Nomura T, Nakamura S, Osumi, N. Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during arly embryonic development of the rat cortex. J Neurosci 2005; 25: 9752-61.

Haubensak W, Attardo A, Denk W, Huttner WB.Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 2004; 101: 3196-201.

Hack MA, Sugimori M, Lundberg C, Nakafuku M, Gotz M. Regionalization and fate specification in neurospheres: The role of Olig2 and Pax6. Mol Cell Neurosci 2004; 25: 664-78.

Hack MA, Saghatelyan A, de Chevigny A, et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 2005; 8: 865-72.

Berninger B, Costa MR, Koch U, et al.Functional properties of neurons derived from in-vitro reprogrammed postnatal astroglia. J Neuro Sci 2007; 27: 8654-64.

Buffo A, Vosko MR, Erturk D, et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA 2005;102: 18183-8.

Erickson AC, Couchman JR. Still more complexity in mammalian basement membranes. J Histochem Cytochem 2000; 48:1291-306.

Colognato H, Baron W, Avellana-Adalid V, et al. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 2002; 4: 833-41.

Gotz M, Stricker SH. Go with the flow: signaling from the ventricle directs neuroblast migration.Nat Neurosci 2006; 9: 470-2.

Reichenbach A, Wolburg H. Astrocytes and ependymal glia. Neuroglia., Oxford University Press: Oxford 2005.

Backman M, Machon O, Mygland L, et al.Effects of canonical Wnt signaling on dorsoventral specification of the mouse telencephalon. Dev Biol 2005; 279: 155-68.

Brembeck FH, Rosario M, Birchmeier W.Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16: 51-9.

Chenn A, Walsh CA. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb Cortex 2003; 13: 599-606.

Junghans D, Hack I, Frotscher M, Taylor V,Kemler R. Beta-catenin-mediated celladhesion is vital for embryonic forebrain development.Dev Dyn 2005; 233: 528-39.

Machon O, van den Bout CJ, Backman M,Kemler R, Krauss, S. Role of beta-catenin in the developing cortical and hippocampal neuroepithelium.Neuroscience 2003; 122: 129-43.

Zechner D, Fujita Y, Hulsken J, et al. Beta-Catenjn signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 2003; 258: 406-18.

Jászai J, Fargeas CA, Florek M, Huttner WB,Corbeil D. Focus on molecules: prominin-1 (CD133). Exp Eye Res 2007; 85(5):585-6.

Marzesco AM, Janich P, Wilsch-Brauninger M,et al. Release of extracellular membrane particles carrying the stern cell marker prominin-l (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005; 118: 2849-58.

Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 1997; 94: 12425-30.

Sawamoto K, Wichterle H, Gonzalez-Perez O,et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 2006; 311: 629-32.

Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.J Comp Neurol 1989; 289: 74-88.

Adolf B, Chapouton P, Lam CS, et al.Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon.Dev Biol 2006; 295: 278-293.

Alvarez-Buylla A. Mechanism of neurogenesis in adult avian brain. Experientia 1990; 46: 948-55.

Chapouton P, Adolf B, Leucht C, et al. her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain. Development 2006; 133: 4293-303.

Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 2002; 298: 1993-6.

Stevenson JA, Yoon MG. Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1981; 1: 862-75.

Hasegawa K, Chang YW, Li H, et al. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 2005; 193: 394-410.

Garcia-Verdugo JM, Ferron S, Flames N,Collado L, Desfilis E, Font E. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 2002; 57: 765-75.

Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M.Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics,migration and cell fate. Dev Biol 2006; 295: 263-77.

Perez-CanelIas MM, Font E, Garcia-Verdugo JM. Postnatal neurogenesis in the telencephalon of turtles: evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs. Brain Res Dev Brain Res 1997; 101: 125-37.

Doetsch F, Scharff C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav Evol 2001; 58: 306-22.

Curtis MA, Kam M, Nannmark D, et al. Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science 2007;315(5816): 1243-9.

Pellegrini E, Mouriec K, Anglade I, et al.Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 2007; 501: 150-167.

Zupanc GK, Hinsch K, Gage FH. Proliferation,migration, neuronal differentiation, and longterm survival of new cells in the adult zebrafish brain. J Camp Neurol 2005; 488: 290-319.

Alvarez-BuyIla A, Seri B, Doetsch F. Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 2002; 57: 751-8.

Zupanc GK, Clint SC. Radial gliakmediated upregulation of somatostatin in the regenerating adult fish brain. Neurosci Lett 2001; 309: 149-52.

Brockes JP, Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 2005; 310:1919-23.

Schnapp E, Kragl M, Rubin L, Tanaka EM.Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 2005; 132: 3243-53.

Gage FH. Neurogenesis in the adult brain. J Neurosci 2002; 22: 612-3.

Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223-50.

Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999a; 97: 703-16.

Tramontin AD, Garcia-Verdugo JM, Lim DA,Alvarez-Buyna A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 2003; 13: 580-7.

Buffo A, Rite I, Tripathi P, et al. Origin and progeny of reactive gliosis - a source of mutlipotent cells in the njured brain. Proc Natl Acad Sci USA 2008; 105(9): 3581-6.

Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R,Gotz M. Inducible gene deletion in astroglia and radial glia-a valuable tool for functional and lineage analysis. Glia 2006; 54: 21-34.

Colak D, Mori T, Brill M, et al. Adult neurogenesis requires Smad4 -mediated bone morphogenic protein signaling in stem cells. J Neurosci 2008; 28(2): 434-46.

Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110: 429-41.

Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 2006; 26: 11948-60.





Add comment 





Home  Editorial Board  Search  Current Issue  Archive Issues  Announcements  Aims & Scope  About the Journal  How to Submit  Contact Us
Find out how to become a part of the HMJ  |   CLICK HERE >>
© Copyright 2012 - 2013 HMJ - HAMDAN Medical Journal. All Rights Reserved         Website Developed By Cedar Solutions INDIA