Hamdan Medical Journal (previously the Journal of Medical Sciences)

Table of Contents  

Dental Stem Cells and Their Potential Role in Regenerative Medicine

Mohamed Jamal, Sami Chogle, Harold Goodis, Sherif M. Karam
Published in : Journal of Medical Sciences ; Vol 4, No 2 (2011)
DOI : 10.2174/1996327001104020053


Advances have been made in identifying dental stem cells and their differentiation potential. Five different types of dental stem cells have been isolated from dental soft tissues: dental pulp, apical papilla, dental follicle and periodontal ligament. The characteristic features of these cells have been explored. They express various arrays of biomarkers including those specific for mesenchymal and/or embryonic stem cells. In vitro and in vivo studies have revealed that these stem cells varied in their proliferation and differentiation potential. Recent studies have demonstrated their wide range of plasticity and their potential use for regenerative medicine and dentistry. This article summarizes information available on the different types of dental stem cells and discusses their potential use in regenerative medicine.


Dental stem cell, differentiation; regeneration; tissue engineering

View article in  :   PDF    


Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007; 33: 377-90.

Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005; 31: 711-8.

Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008; 34: 645-51.

Windley W, 3rd, Teixeira F, Levin L, Sigurdsson A, Trope M. Disinfection of immature teeth with a triple antibiotic paste. J Endod 2005; 31: 439-43.

Bongso A, Lee EH. Stem cells: from bench to bedside. 2nd Ed. Singapore: World Scientific 2005.

Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-9.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97: 13625-30.

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100: 5807-12.

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-55.

Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006; 1: e79.

Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24: 155-65.

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531-5.

Laino G, d'Aquino R, Graziano A, Lanza V, Carinci F, Naro F, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 2005; 20: 1394-402.

Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 2006; 12: 2813-23.

Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. Comparison of stem-cellmediated osteogenesis and dentinogenesis. J Dent Res 2003; 82: 976-81.

Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 2006; 184: 105-16.

Gould TR, Melcher AH, Brunette DM. Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodontal Res 1980; 15: 20-42.

McCulloch CA, Melcher AH. Cell density and cell generation in the periodontal ligament of mice. Am J Anat 1983; 167: 43-58.

McCulloch CA, Bordin S. Role of fibroblast subpopulations in periodontal physiology and pathology. J Periodontal Res 1991; 26(3 Pt 1): 144-54.

Isaka J, Ohazama A, Kobayashi M, Nagashima C, Takiguchi T, Kawasaki H, et al. Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 2001; 72: 314-23.

Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 2007; 10: 149-60.

Ten Cate AR. The development of the periodontium-- a largely ectomesenchymally derived unit. Periodontol 2000 1997; 13: 9-19.

Cahill DR, Marks SC, Jr. Tooth eruption: evidence for the central role of the dental follicle. J Oral Pathol 1980; 9: 189-200.

Wise GE, Frazier-Bowers S, D'Souza RN. Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med 2002; 13: 323-34.

Diekwisch TG. The developmental biology of cementum. Int J Dev Biol 2001; 45: 695-706.

Vollner F, Driemel O, Reichert TE, Morsczeck C. Differentiation and characterization of dental follicle precursor cells (PCs). European Cells and Materials 2007; 14(Suppl. 2).

Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res 2008; 87(8): 767-71.

Vollner F, Ernst W, Driemel O, Morsczeck C. A twostep strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 2009; 77: 433-41.

Morsczeck C, Vollner F, Saugspier M, Brandl C, Reichert TE, Driemel O, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 2010; 14: 433-40.

Kemoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 2007; 329: 283-94.

Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008; 34: 166-71.

Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34: 962-9.

Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 2008; 34: 421-6.

Ruffins S AK, Bronner-Fraser M. Early migrating neural crest cells can form ventral neural tube derivatives when challenged by transplantation. Dev Biol 1998; 203: 295-304.

Chai Y, Jiang X, Ito Y, Bringas P, Jr., Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000; 127: 1671-9.

Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; Implications for tissue engineering and repair in the nervous system. Eur J Neurosci 2004; 19: 2388-98.

Davidson RM. Neural form of voltage-dependent sodium current in human cultured dental pulp cells. Arch Oral Biol 1994; 39: 613-20.

Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008; 26: 1787-95.

Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA. Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 2009; 27: 2229-37.

Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008; 26: 638-45.

Comments on this article

View all comments  |  Add comment 

Home  Editorial Board  Search  Current Issue  Archive Issues  Announcements  Aims & Scope  About the Journal  How to Submit  Contact Us
Find out how to become a part of the HMJ  |   CLICK HERE >>
© Copyright 2012 - 2013 HMJ - HAMDAN Medical Journal. All Rights Reserved         Website Developed By Cedar Solutions INDIA